
ARTICLE IN PRESS
0889-9746/$ - se

doi:10.1016/j.jfl

E-mail addr
Journal of Fluids and Structures 22 (2006) 997–1028

www.elsevier.com/locate/jfs
External shock loading on a submerged
fluid-filled cylindrical shell

S. Iakovlev

Department of Engineering Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada B3J 2X4

Received 21 December 2004; accepted 13 March 2006

Available online 23 August 2006
Abstract

The interaction between a submerged fluid-filled elastic circular cylindrical shell and an external shock wave is

considered. The study focuses on the internal acoustic field. A linear formulation of the problem is considered. A semi-

analytical solution is obtained and used to simulate the interaction. A variety of phenomena are observed in the internal

fluid, including the reflection and focusing of the internal acoustic wave as well as the radiation into the fluid of elastic

waves propagating in the shell. Throughout the paper, the results of numerical simulations are compared with available

experimental data, and a good agreement is observed. The solution developed appears to be suitable for use as a

benchmark. Engineering relevance of the phenomena observed is discussed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The interaction between shock waves and cylindrical shells has been extensively studied for the past five decades, and

an enormous effort has been put into investigating various aspects of this complex multi-physics phenomenon. This is

not surprising at all since circular cylindrical shells are one of the most commonly used construction members in a wide

variety of engineering structures. Specifically, the offshore, naval, aerospace, nuclear, chemical and petroleum industries

all extensively employ fluid-interacting cylindrical shell structures. Shock loads are a major threat to the safety of

structures and installations common to the industries mentioned, and so the study of shock–shell interaction has always

been of significant practical interest.

From the research point of view, study of the interaction between shock waves and shells is always challenging, both

theoretically and experimentally. First of all, one has to deal with at least two, often more, coupled media which are

reacting to a shock very differently. Furthermore, the interaction is a non-stationary and high-frequency process. Many

complex phenomena, such as cavitation, interaction with detonation bubble, and water jet impact contribute to the

interaction. Plastic deformations and structural failure often have to be considered as well. This complexity makes

experiments involving shells and shock waves very technically demanding and costly, and the only alternative to those is

mathematical modelling. The latter presents the researcher with many challenges as well, and adequate numerical

simulation of shell–shock interaction remains a topic of active research interest to this day.

The first attempts to approach the interaction between circular cylindrical shells and shock waves date back to the

early 1950s. At that time, the interest to the type of fluid–structure interaction in question was induced primarily by the
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Nomenclature

cf sound speed in the fluid, ĉf ¼ 1

cs sound speed in the shell material, ĉs ¼ csc
�1
f

h0 thickness of the shell, ĥ0 ¼ h0r�10

In modified Bessel function of the first kind of

order n

Kn modified Bessel function of the second kind

of order n

pa peak incident pressure, p̂a ¼ par
�1
f c�2f

pe pressure in the external fluid, p̂e ¼ per
�1
f c�2f

pi pressure in the internal fluid, p̂i ¼ pir
�1
f c�2f

p0 incident pressure, p̂0 ¼ p0r
�1
f c�2f

pd diffraction pressure, p̂d ¼ pdr
�1
f c�2f

pe
r external radiation pressure, p̂e

r ¼ pe
rr
�1
f c�2f

pi
r internal radiation pressure, p̂i

r ¼ pi
rr
�1
f c�2f

ps total pressure on the shell surface, p̂s ¼

psr
�1
f c�2f

r radial coordinate of the polar coordinate

system, r ¼ Rr�10

r0 radius of the shell, r̂0 ¼ 1

R0 radial distance to the source of the incident

wave, R̂0 ¼ R0r�10

SR incident shock wave stand-off, ŜR ¼ SRr�10

t time, t ¼ tcf r�10

v� transverse displacement of the middle sur-

face of the shell, v ¼ v�r�10

w� normal displacement of the middle surface

of the shell, w ¼ w�r�10

� strain in the middle surface of the shell, �̂ ¼ �

y angular coordinate of the polar coordinate

system

l exponential decay rate, l̂ ¼ lcf r�10

n Poisson’s ratio

xi
n ‘volume’ response functions, internal fluid

xe
n ‘volume’ response functions, external fluid

rf density of the fluid, rf ¼ 1

rs density of the shell material, r̂s ¼ rsr
�1
f

R radial coordinate of the polar coordinate

system, r ¼ Rr�10

t time, t ¼ tcf r�10

fe fluid velocity potential in the external fluid,

f̂e ¼ fec�1f r�10

fi fluid velocity potential in the internal fluid,

f̂i ¼ fic
�1
f r�10

f0 fluid velocity potential in the incident wave,

f̂0 ¼ f0c�1f r�10

fd fluid velocity potential in the diffracted

wave, f̂d ¼ fdc�1f r�10

fe
r fluid velocity potential in the external

radiated wave, f̂e
r ¼ fe

rc�1f r�10

fi
r fluid velocity potential in the internal

radiated wave, f̂i
r ¼ fi

rc
�1
f r�10

ci
n ‘surface’ response functions, internal fluid

ce
n ‘surface’ response functions, external fluid

ð�Þn sin ny and ð�Þn cos ny denote the harmo-

nics of (*). Unless stated otherwise, capita-

lized symbols denote the Laplace transforms

of the corresponding functions. Other sym-

bols are defined in the text.
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needs of the naval industry, and the research focus was on structural analysis. Mindlin and Bleich (1953) considered the

early stages on the interaction between a plane shock wave and a circular cylindrical shell, and only analyzed

dilatational and flexural modes. Haywood (1958) addressed the same plane wave impinging on a cylindrical shell but

introduced a better early-time approximation. Peralta and Raynor (1964) considered the initial response of a fluid-filled

cylindrical shell to an external shock wave and analyzed the shell velocity and diffraction pressure. Geers (1969)

obtained an exact analytical solution of the problem of the interaction between a plane shock wave and a cylindrical

shell using a combination of the modal expansion and the Laplace transform approach, and considered the total

response of the shell.

Huang and Wang (1970) considered the interaction between a spherical shock wave and a circular cylindrical shell,

and obtained an analytical solution using the Laplace–Fourier transform methodology combined with the modal

approach. Stresses and strains were analyzed at a number of points, and comparison with the plane wave case was

presented. An early-time solution of the same problem was obtained by Huang and Wang (1971), and the diffraction

pressure was computed at several points on the shell surface. Geers (1972) considered scattering by a cylindrical shell of

a plane acoustic wave and presented a detailed study of the diffraction pressure on the shell surface. Huang (1975)

addressed scattering of a spherical shock wave by a rigid cylinder, and employed separation of variables and the

Laplace transform. The surface pressure was discussed, and a formula linking the two- and three-dimensional solutions

was introduced. Huang (1979) considered the response of a system of two co-axial cylindrical shells to a plane shock

wave and analyzed the shell dynamics.

Even though we only mentioned some of the studies published, it appears that the vast majority of the

researchers in the 1950–1970s were focusing on structural analysis, not the acoustic phenomena. The acoustic pressure

induced during the interaction was often viewed as an ‘external loading’ which had to be determined to analyze

stress–strain states. However, advanced analysis of engineering structures requires in-depth understanding of all the
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aspects of the interaction. To that end, the acoustics of the interaction appears to be not less important than the

structural analysis.

This, of course, was clearly understood a long time ago. Before it was possible to numerically simulate two- and

three-dimensional shell–shock interaction, many experiments were conducted to visualize shock-induced pressure fields.

For example, Bryson and Gross (1961) considered diffraction of strong shock waves by various solid bodies, in

particular circular cylinders, and published several photographs of shock diffraction that were used for comparison by

many researchers later on. Heilig (1969) considered diffraction of a shock wave by cylinders of various radii, and

visualized the diffraction process using shadowgrams.

It appears, however, that shock-induced acoustic fields had not been a subject of extensive numerical study up until

the mid 1980s when significant advances in computational technologies made numerical simulation of the interaction

possible. For example, Yang et al. (1985) considered diffraction of strong plane shocks by various curved surfaces, in

particular cylindrical. That study was extended to the case of a shock diffraction by a circular cylinder by Yang and Liu

(1987) who presented detailed analysis of the acoustic fields. Glass et al. (1989) considered diffraction of a shock wave

on a semi-circular cylinder and presented comparison to experimental results, and Eidelman et al. (1993) investigated

shock wave diffraction by a cylinder in a dusty flow.

Experimental techniques were advancing as well, and many high-quality visualizations of shock–structure interaction

appeared in the literature. We will only mention a few of them. Takayama (1987) considered shock wave propagation

over a cylinder in a dusty gas flow, Heilig (1987) addressed various aspects of the shock wave reflection from a

cylindrical surface, Hermann et al. (1987) studied vortex shedding from a cylinder in a shock flow, Sugiyama et al.

(1989) considered a shock-induced flow past a circular cylinder in a dusty flow and presented some numerical results as

well, and Takayama (1993) addressed a shock flow outside and inside a cylinder with a slotted surface.

Further development of numerical methods and computational technologies made possible a much more

comprehensive analysis of the shell–shock interaction. In particular, it became possible to model many complex

physical phenomena (e.g., cavitation, gas bubble formation and dynamics, viscosity effects, turbulence etc.).

Incorporating those into modelling of the interaction brought the analysis of shock–shell interaction to a new level of

sophistication.

For example, Ofengeim and Drikakis (1997) and Drikakis et al. (1997) numerically addressed diffraction of

a plane shock wave by a rigid cylinder, and considered both inviscid and viscous models. Interaction at various

Mach numbers was analyzed, and the effect of viscosity in various regions and at various times was discussed. Sun

et al. (2003) investigated the interaction between a shock wave and a rotating cylinder both numerically and

experimentally.

Takano et al. (1997) considered stresses in elastic cylinders subjected to an external shock wave, and also analyzed the

surface-radiated acoustic waves. Sun (1998) studied shock wave diffraction on bodies of various shapes numerically,

and compared numerical simulations to experimental results. Heilig (1999) studied shock wave propagation over a

circular cylinder employing both numerical methods and experimental techniques and addressed a two-cylinder

arrangement as well.

Oakley et al. (1999) considered the interaction of a shock wave with a hollow cylinder aiming at modelling impulsive

shock loading on cooling tubes of an inertial confinement fusion reactor, and studied the interaction both

experimentally and numerically. Pressure and acceleration time-histories were reported, and numerical simulations were

compared to experimental shadowgrams. The study was extended (Oakley et al., 2001) to an arrangement of three

cylinders, which was a much more realistic representation of the geometry of the reactor in question.

Wardlaw and Luton (2000) considered an explosion inside a fluid-filled cylindrical shell, focusing their study on the

internal pressure fields and the dynamics of the shell. The interaction was simulated numerically, and a number of

experiments were carried out. The influence of the shock–bubble interaction and the cavitation collapse on the

interaction was investigated. Single- and double-walled cylinders were considered, and both rigid and deformable

models were analyzed. Chambers et al. (2001) experimentally analyzed pressure on the inner surface of a water-filled

aluminum shell subjected to an internal explosion, and presented comparison with numerical simulations. Sandusky et

al. (1999) conducted a series of experiments to study the response of a fluid-filled shell to an internal explosion. Plastic

deformations of the shell were analyzed, and the wall velocity and displacement, as well as strain, were measured.

Preliminary numerical simulations were used to design the experiment.

Some work was devoted to shock wave focusing in reflectors of various shapes. Although these studies are not

directly related to shell-structure interaction, they provide valuable reference information for analysis of internal

acoustic fields. Sturtevant and Kulkarny (1976) experimentally studied focusing of shock waves in cylindrical reflectors.

Sommerfeld and Muller (1988) presented experimental and numerical study of shock wave focusing by ellipsoidal and

parabolic reflectors in water. Izumi et al. (1994) studied reflection and focusing of shock waves from parabolic

reflectors. Schedin et al. (1997) experimentally investigated shock wave propagation and reflection in an elliptic cavity.
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Sun and Takayama (1996) conducted experiments to analyze focusing in a circular reflector, and such focusing was

further addressed numerically by Sun (1998) and Sun and Takayama (1999). Liang et al. (1999) studied focusing of

shock waves in parabolic reflectors, and presented visualization of numerical results as well as some comparison to

experiments. Apazidis (2003) numerically addressed focusing of shock waves in an elliptic cavity, and established some

interesting features of focusing in elliptic reflectors.

As to more complex systems involving cylindrical structures, we will mention studies of Yang et al. (1991) who

presented numerical simulations of shock wave diffraction on an elliptic cylinder at different angles of attack, Jialing

and Hongli (1997) who addressed numerically and experimentally shock wave propagation over a two-cylinder

arrangement, Abe et al. (1999) who considered shock wave propagation over an array of circular cylinders, and Lind et

al. (1999) who investigated shock wave attenuation by a structure consisting of two perpendicular arrays of cylindrical

rods. Andelfinger (1994) considered an underwater explosion against a cylindrical shell with end closures and external

stiffeners, and numerically analyzed external pressure field and plastic deformations of the structure; comparison to

experimental results was presented as well.

This literature review would not be complete without mentioning the considerable computational and experimental

effort that has been put into studying shock interaction with structures of complex geometry. Of those, the most

challenging is modelling of real-life industrial structures, for example ships [e.g., Aanhold et al. (1998), Shin and

Santiago (1998), Park et al. (2003)]. Extensive reviews of the literature pertaining to analysis of the response of

submerged structures to underwater explosions can be found, for example, in the compilations by Mair (1999b) where

analytical, numerical, and experimental studies are discussed, and Mair (1999a) which focuses on numerical

approaches.

Even though the recent research effort seems to have been focused on numerical modelling of shell–shock interaction,

analytical and hybrid analytical–numerical solutions are still being successfully employed. For example,

doubly asymptotic approximations have been proven as an extremely efficient technique of fluid–structure inter-

action analysis [e.g., Geers and Zhang (1994a, b)]. Furthermore, converged analytical solutions are extensively

used as benchmarks for verification of numerical codes (Mair, 1999b), therefore some attention is still being paid to

analytical approaches [e.g., Huang and Mair (1996), Sprague and Geers (1999)]. As to semi-analytical approaches,

Iakovlev (2002a) studied stress–strain state of a fluid-filled submerged cylindrical shell subjected to a spherical shock

wave, and Iakovlev (2004) considered the dynamics of such a system incorporating a rigid coaxial cylindrical core.

Another example of a semi-analytical approach is the study of Liang et al. (2000) who coupled the finite element

method with the doubly asymptotic approximations to investigate the response of a submerged spherical shell to an

external shock wave.

As this analysis of the literature indicates, it appears that the internal acoustic field induced by an external shock wave

in a submerged fluid-filled circular cylindrical shell has not yet been addressed. Study of this aspect of shock–shell

interaction is the main objective of this paper.

Furthermore, if an acceptable agreement between available experimental data and the numerical simulations based

on the solution obtained here is established, the latter will be suitable for use as a benchmark. It appears that such a

benchmark would be a useful addition to the existing set of converged analytical solutions used by the underwater

explosion community (Mair, 1999b). Also, if the proposed methodology turns out to be successful for rather a simple

system considered here, it will be possible to confidently use it for analysis of much more complex shell systems. Thus,

another goal of the present study is to build a foundation for future research, including a variety of visualization

techniques and computer codes facilitating fluid–structure interaction analysis of shock-subjected shells. In view of that,

special attention is paid throughout the paper to experimental verification of the results obtained.

Discussing benchmark solutions, we would like to particularly emphasize that most of the benchmarks currently in

use are those providing information about structural dynamics, not acoustic fields. Thus, it would be of practical value

to produce benchmarks that would allow for simulation of pressure fields for several common geometries and be

therefore suitable for verification of both structural analysis codes and the codes aimed at analysis of acoustic fields

induced during shell–shock interaction. In this light, the present work is first in a series of semi-analytical studies the

author intends to publish.

Finally, we mention that there is one more reason for considering the internal acoustic field induced by an external

shock wave. As it has been shown in the author’s earlier studies [e.g., Iakovlev (2002a) and particularly Iakovlev

(2004)], many important elastic effects in the shell are due to acoustic phenomena in the internal fluid. Even though

there was no doubt about the connection between the dynamics of the stress–strain state and the acoustics of the

internal fluid, the analysis carried out was ‘implicit’, i.e. the internal pressure field itself was not analyzed, and the

conclusions drawn were based on what was observed on the surface of the shell. Thus, it would definitely be of interest

to study the internal field directly, and to actually visualize the acoustic waves that were seen to cause significant

changes in the stress–strain state.
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2. Mathematical formulation

We consider a circular cylindrical shell of radius r0 and thickness h0. We assume that h0=r051, and also that the

deflections of the shell surface are small comparatively to its thickness, so linear theory of shells is applicable. The

transverse and normal middle surface displacements are v� and w�, respectively. The shell material is characterized by

density rs, sound speed cs and Poisson’s ratio n. The shell is submerged into and filled with linearly compressible,

irrotational, non-viscous fluid of density rf . The sound speed in the fluid is cf . We assume that the shell is subjected to a

cylindrical shock wave whose source is located at the distance R0 from the axis of the shell. Polar coordinates ðR; yÞ
based on the axis of the shell are employed. The schematic of the problem is shown in Fig. 1.

The assumption of a cylindrical incident wave implies a two-dimensional simplification of the generally three-

dimensional problem. Analysis indicated that, while enormously reducing computational time, such a simplified model

captures the most important dynamic features of the interaction really well. Note also that we consider the simplest

two-fluid model, i.e. we assume that the same fluid is both inside and outside the shell. This allows us to concentrate on

the most important dynamic features of the shell–fluid interaction without bringing in the complexity of a system

consisting of three different media. We note that, even though the solution for the general case of two different fluids

would be just slightly more complex, preliminary analysis shows that the resulting acoustic fields would be qualitatively

different. Addressing the general case of two different fluids is one of the author’s future research objectives.

The fluids are governed by the wave equations

r2fe ¼
1

c2f

q2fe

qt2
and r2fi ¼

1

c2f

q2fi

qt2
, (1)

where fe and fi are the fluid velocity potentials in the external and internal fluids, respectively, and t is time.

The shell equations in displacements are [the equations assume the Love–Kirchhoff hypothesis, and their detailed

derivation can be found, for example, in Junger and Feit (1972)]

1

r20

q2v�

qy2
�

1

r20

qw�

qy
þ k2

0

1

r20

q3w�

qy3
þ

1

r20

q2v�

qy2

� �
¼

1

c2s

q2v�

qt2
, (2)

1

r20
w� �

1

r20

qv�

qy
þ k2

0

1

r20

q4w�

qy4
þ

1

r20

q3v�

qy3

� �
¼ wps �

1

c2s

q2w�

qt2
, (3)

where k2
0 ¼ h20=ð12r20Þ, w ¼ ðh0rsc

2
s Þ
�1, and ps is the pressure acting upon the shell surface. The strain in the middle

surface of the shell is given by

� ¼
1

r0

qv�

qy
� w�

� �
. (4)

We note that in many practical situations, some terms in (2) and (3) can be neglected without changing the resulting

displacements significantly [e.g., Ugural (1981), Scott (1988)]. We, however, consider the most complete version given

by Eqs. (2) and (3).
r0

h0

shock wave

R0 r0

w

v

external fluid

internal fluid

θ

Fig. 1. Schematic of the problem.
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The external pressure, pe, is contributed by the incident pressure p0, diffraction pressure pd , and external radiation

pressure pe
r ,

pe ¼ p0 þ pd þ pe
r , (5)

whereas the internal acoustic field is completely determined by the internal radiation pressure, pi ¼ pi
r. The total

pressure ps acting upon the shell is

ps ¼ ðp0 þ pd þ pe
r � pi

rÞjR¼r0 . (6)

The total fluid velocity potentials fe and fi are

fe ¼ f0 þ fd þ fe
r (7)

and

fi ¼ fi
r, (8)

where f0, fd , f
e
r , and fi

r are the potentials in the incident shock wave, diffracted wave, external radiated wave,

and internal radiated wave, respectively. The equations for p0 and f0, along with their derivation, can be found in

Appendix B.

The boundary conditions on the shell surface are

qfe
r

qR

����
R¼r0

¼ �
qw�

qt
, (9)

qfi
r

qR

����
R¼r0

¼ �
qw�

qt
, (10)

and

qfd

qR

����
R¼r0

¼ �
qf0

qR

����
R¼r0

, (11)

along with the conditions at the infinity,

fd�!0 and fe
r�!0 when R!1. (12)

We also require the internal potential to be bounded on the axis of the shell, and assume appropriate periodicity

conditions y-wise as well as zero initial conditions.

To make the results applicable to a wider range of practical situations, and to avoid dealing with small numerical

values of t, we introduce a dimensionless formulation of the problem, and normalize all variables to r0, cf , and rf . With

some exceptions (namely, the shell surface displacements, time, and radial coordinate), a hat over a dimensionless

variable is used to distinguish it from its dimensional counterpart. From here on, we mostly consider dimensionless

variables. However, acoustic fields are analyzed in dimensional form, which seems to be more appropriate for practice-

oriented analysis.

Before we proceed to the discussion of the solution, we outline the dimensionless formulation of the problem. The

dimensionless wave equations are

r2f̂e ¼
q2f̂e

qt2
and r2f̂i ¼

q2f̂i

qt2
, (13)

and the equations of shell dynamics are

q2v

qy2
�

qw

qy
þ k2

0

q3w

qy3
þ

q2v

qy2

� �
¼

1

ĉ2s

q2v

qt2
, (14)

w�
qv

qy
þ k2

0

q4w

qy4
þ

q3v

qy3

� �
¼ ŵp̂s �

1

ĉ2s

q2w

qt2
, (15)

where ŵ ¼ ðr̂sĉ
2
s ĥ0Þ

�1. The strain expressed in terms of the dimensionless displacements is

� ¼
qv

qy
� w. (16)
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The dimensionless boundary conditions are

qf̂e
r

qr

�����
r¼1

¼ �
qw

qt
, (17)

qf̂i
r

qr

�����
r¼1

¼ �
qw

qt
, (18)

and

qf̂d

qr

�����
r¼1

¼ �
qf̂0

qr

�����
r¼1

, (19)

along with the conditions at the infinity,

f̂d�!0 and f̂e
r�!0 when r!1. (20)
3. Acoustics

The approach we use to treat the acoustic part of the problem is rather standard. We apply the Laplace transform

time-wise to the dimensionless wave equations (13) to obtain

q2F̂e

qr2
þ

1

r

qF̂e

qr
þ

1

r2
q2F̂e

qy2
� s2F̂e ¼ 0, (21)

and

q2F̂i

qr2
þ
1

r

qF̂i

qr
þ

1

r2
q2F̂i

qy2
� s2F̂i ¼ 0, (22)

where F̂e and F̂i are the Laplace transforms of f̂e and f̂i, respectively, and s is the transform variable. Then we use

separation of variables y-wise which yields the general solution of (21) and (22) in the form

F̂ ¼ fFnInðrsÞ þ GnKnðrsÞg cos ny; n ¼ 0; 1; . . . , (23)

where In and Kn are the modified Bessel functions of order n of the first and second kind, respectively, and Fn and Gn

are arbitrary functions of s. After the boundary conditions are imposed, the Laplace transforms of the harmonics of the

three unknown potential components are obtained:

F̂d
n ¼ BnXe

n cos ny, (24)

F̂r;e
n ¼ sW nXe

n cos ny, (25)

and

F̂r;i
n ¼ �sW nXi

n cos ny. (26)

Here Bn and W n are the Laplace transforms of bn and wn, respectively, where

qf̂0

qr

�����
r¼1

¼
X1
n¼0

bnðtÞ cos ny, (27)

and

w ¼
X1
n¼0

wnðtÞ cos ny, (28)

and xe
nðr; tÞ and xi

nðr; tÞ are the ‘response functions’ of the problem, the Laplace transforms of which, Xe
nðr; sÞ and Xi

nðr; sÞ,
respectively, are given by

Xe
nðr; sÞ ¼ �

KnðrsÞ

sK0nðsÞ
, (29)
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and

Xi
nðr; sÞ ¼

InðrsÞ

sI0nðsÞ
. (30)

The functions xe
nðr; tÞ and xi

nðr; tÞ represent the response of the external and internal fluids, respectively, to the

motion of and scattering by the shell, and are discussed later. It is important to point out that the response

functions we consider here represent pressure not only on the shell surface, but anywhere in the fluids; and so

they can be referred to as the ‘volume’ response functions, as opposed to the ‘surface’ response functions that appear

when the pressure is only studied on the shell surface. Setting r ¼ 1 reduces the ‘volume’ response functions xe
nðr; tÞ and

xi
nðr; tÞ to their ‘surface’ counterparts ce

nðtÞ and ci
nðtÞ, respectively (Iakovlev, 2002a, 2004), the Laplace transforms of

which are

Ce
nðsÞ ¼ �

KnðsÞ

sK0nðsÞ
, (31)

and

Ci
nðsÞ ¼

InðsÞ

sI0nðsÞ
. (32)

Since our main objective is the internal acoustic field, the external pressure is only considered on the outer surface of

the shell. Applying some theorems related to the Laplace transform to (24) and (25), the two unknown components of

the external pressure on the shell surface can be obtained as

p̂d jr¼1 ¼
X1
n¼0

p̂d
n ðtÞ cos ny, (33)

and

p̂e
r jr¼1 ¼

X1
n¼0

p̂r;e
n ðtÞ cos ny, (34)

where

p̂d
n ¼ �bnðtÞ �

Z t

0

bnðZÞ
dce

n

dZ
ðt� ZÞdZ, (35)

and

p̂r;e
n ¼ �

Z t

0

d2wnðZÞ
dZ2

ce
nðt� ZÞdZ. (36)

Eqs. (33) and (34), along with the modal representation of the incident pressure on the shell surface,

p̂0jr¼1 ¼
X1
n¼0

p̂0nðtÞ cos ny, (37)

completely determine the total pressure on the outer surface of the shell.

The internal pressure is easily obtained as

p̂i
r ¼

X1
n¼0

p̂r;i
n ðr; tÞ cos ny, (38)

where

p̂r;i
n ¼

Z t

0

d2wnðZÞ
dZ2

xi
nðr; t� ZÞ dZ. (39)

Note that, unlike (33)–(36), Eqs. (38) and (39) allow for computation of the pressure anywhere inside the shell.

Note also that setting r ¼ 1 reduces (38) to the equation for the internal pressure on the inner shell surface,

p̂i
rjr¼1 ¼

X1
n¼0

p̂r;i
n jr¼1 cos ny, (40)
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where

p̂r;i
n jr¼1 ¼

Z t

0

d2wnðZÞ
dZ2

xi
nðr; t� ZÞjr¼1 dZ ð41Þ

¼

Z t

0

d2wnðZÞ
dZ2

ci
nðt� ZÞdZ. ð42Þ

The total acoustic load on the shell surface can therefore be written as

p̂s ¼
X1
n¼0

p̂s
nðtÞ cos ny, (43)

where

p̂s
n ¼ p̂0n þ p̂d

n þ p̂r;e
n � p̂r;i

n jr¼1. (44)

Thus, simulating the internal acoustic field is a two-step process. First, Eq. (43) is coupled with the shell equations to

determine the normal displacements w. Second, the normal displacement is used to simulate the entire internal field

using Eqs. (38) and (39).

We would like to emphasize that the first and second parts of the solution do not necessarily have to be

approached with the same methodology. In fact, the normal displacements can be determined completely

independently, and used later in Eqs. (38) and (39) to simulate the internal field. This seems to be an advantage

of the solution proposed, since it allows one to simulate the internal field in any fluid-filled shell for which

there is available a time-history of w over the entire cross-section of the shell. In particular, nothing appears

to be stopping one from using experimental measurements of w in a real shell system, as long as none of the

assumptions made are violated. This appears to be a promising direction for future research, since measurements

of the normal displacement are much less technically challenging than those of the pressure anywhere inside

the shell.

In order to solve the shell equations, one has to determine the unknown surface pressure components in (44). Those

are expressed in terms of the convolution integrals which include the ‘surface’ response functions. The external ones, ce
n,

were introduced by Geers (1969) in a slightly different form, and their graphs along with a brief discussion can be found

in Iakovlev (2004). The internal response functions ci
n are analyzed in Iakovlev (2002b). Thus, all the information one

needs to determine the displacements of the shell is readily available.

The situation with the second part of the solution is much more complicated. The convolution integral (39)

includes the ‘volume’ internal response functions xi
n which, to the best of the author’s knowledge, have

not been addressed yet. As it turned out, even though the analytical procedure developed for the ‘surface’ internal

response functions ci
n can be successfully applied to obtain analytical expressions for xi

n, actual computation

of xi
n is challenging, as is their numerical integration. The analytical inversion of the Laplace transforms of xi

n

along with the discussion of a variety of issues associated with these functions can be found in Appendix A. Here

we just mention that the behaviour of the ‘volume’ internal response functions is incomparably more complex

than that of their surface counterparts, and a number of rather sophisticated algorithms had to be developed to deal

with the associated numerical challenges. Note that in this work we do not consider the ‘volume’ external response

functions xe
n.
4. Shell dynamics

We expand the middle surface displacements v and w into the series

v ¼
X1
n¼0

vn sin ny (45)

and

w ¼
X1
n¼0

wn cos ny, (46)
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and substitute the harmonics vn sin ny and wn cos ny into (2) and (3). This yields an integro-differential system for

every n,

g2
d2vn

dt2
þ c11n vn þ c12n wn ¼ 0,

g2
d2wn

dt2
þ c21n vn þ c22n wn ¼ ŵp̂s

n, (47)

where

c11n ¼ n2 þ k2
0n2; c12n ¼ c21n ¼ �n� k2

0n3; c22mn ¼ 1þ k2
0n4 and g ¼ ĉ�1s , (48)

all initial conditions are zero, and the total pressure on the shell surface p̂s
n is given by (43). System (47) was approached

numerically (finite differences).

Note that, in Eqs. (47), terms multiplied by k̂2
0 represent bending stiffness, so neglecting those terms would imply switching

to a membrane model of deformation (from here on we shall refer to these terms as the ‘bending terms’). The importance of

taking the bending terms into account is often not apparent a priori, and comparison of the results produced by two models,

with and without bending stiffness, for a specific load and a certain range of shell parameters is needed. Such analysis was

carried out, and it was established that for a shell with the thickness-to-radius ratio of less than 0.01 the influence of the

bending terms on the internal acoustic field is not significant, and is limited to a very high-frequency, low-magnitude

contribution. Since shells with h0=r0p0:01 represent an important class of fluid-interacting thin-walled engineering

structures, we shall focus our study on such shells, and shall assume from here on that bending stiffness can be neglected.

We also mention that, even though a semi-analytical approach was chosen in the present work, i.e. an analytical

solution of the acoustic equations was coupled with a finite difference solution of the shell equations, it is possible to

obtain a fully analytical solution of the problem. In that case, instead of applying a finite difference algorithm to system

(47), the Laplace transform technique is used. The resulting system will be that of two algebraic equations for the

transforms of vn and wn, and its solution will involve rather complex fractional expressions of semi-polynomial type in s

with modified Bessel functions as the coefficients. Analytical inversion of such expressions is possible, but is hardly

attractive from the practical point of view. Thus, one is left with only one option, i.e. numerical inversion.

In comparison with the finite-difference approach, that involving numerical inversion of the Laplace transform is

much more time consuming. Furthermore, changing even one parameter of the shell will lead to a different set of

Laplace transforms, and so the inversion will have to be repeated all over again. In contrast, when the finite difference

approach is used and a number of different shells are considered, the components of the surface loading either do not

change at all (incident and diffraction pressure) or are expressed in terms of the shell displacements and the response

functions that are pre-computed (radiation pressure). Thus, changing the parameters of the shell only affects the final

part of the solution, i.e. numerical coupling between the ‘acoustic’ and ‘elastic’ parts, which takes only a small fraction

of the total computational time. Therefore, the semi-analytical approach proposed is not only more time-efficient, it is

also more suitable when many shells with various parameters have to be analyzed.

For the sake of completeness, we applied the fully analytical Laplace transform approach to the ‘test’ case of a plane

shock wave and a steel shell submerged into and filled with water, and compared the results versus the ones produced by

the semi-analytical approach. An excellent agreement was observed, even though the computational time necessary to

achieve similar accuracy was incomparable (in favour of the semi-analytical methodology).
5. Results and discussion

5.1. General discussion and terminology

We consider a steel shell with rs ¼ 7800 kg=m3, cs ¼ 5000m=s, and h0=r0 ¼ 0:01 (r0 ¼ 1m and h0 ¼ 0:01m). The

shell is submerged into and filled with water, rf ¼ 1000 kg=m3 and cf ¼ 1400m=s.
In the shock wave diffraction theory, the term ‘stagnation point’ is used for the points y ¼ 0 and y ¼ p, with the point

y ¼ 0 being referred to as the ‘front stagnation point’, and the point y ¼ p being the ‘rear stagnation point’. Although

this terminology is perfectly appropriate for the case of a rigid cylinder, in the present case it does not seem to be a

natural choice since the shell surface is moving. We suggest referring to these points as the ‘head point’ and ‘tail point’,

respectively. We also suggest referring to the proximities of the head and tail points as the ‘head region’ and ‘tail region’,

respectively.
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At the very beginning of the interaction, the incident wave causes the shell surface in the head region to move. This

motion results in an acoustic wave being originated in the internal fluid. The propagation, reflection, and interaction of

this wave with the shell results in a variety of phenomena occurring in the system. Because of its importance, special

terminology seems to be appropriate, and we suggest referring to this pressure wave as the ‘internal shock wave’. This

terminology is not exactly correct since the internal pressure wave is not a ‘shock wave’ in the classical sense. Namely, it

does not have a front as such, i.e. there is no pressure discontinuity associated with it. However, as we shall see shortly,

the corresponding pressure rise is very sharp, and so the proposed terminology seems to be acceptable.

To facilitate the study of the interaction, we divide it into three stages. Namely, we suggest calling the initial stage the

‘downstream propagation’. The corresponding times are t ¼ 0:00� 2:00, i.e. from the instant when the incident shock

wave impinges on the shell to the instant when the internal shock wave reaches the tail point. The mid-interaction is

suggested to be referred to as the ‘primary reflection and focusing’. The corresponding times are t ¼ 2:00� 3:00, i.e.
from the instant the internal shock wave reflects from the tail region to the instant shortly after it focuses. Finally, we

suggest using the term ‘upstream propagation and secondary reflection and focusing’ for the late interaction,

t ¼ 3:00� 5:00, i.e. when the reflected wave propagates upstream, reflects from the head region and focuses again. Each

of these stages has unique dynamic features and is considered separately.

As to the incident shock wave, we consider two distinctly different loadings. The first one is a large-stand-off shock

wave (i.e. a shock wave with the source located at a significant distance from the shell, R̂0b1), and the second one is a

small-stand-off shock wave (explosion occurs in the close proximity of the shell, R̂0 � 1). In the first case we set

R̂0 ¼ 5:0, and in the second one we assume R̂0 ¼ 1:1. From the practical point of view, these waves represent two

completely different interaction scenarios.

For a large-stand-off explosion, a single high-pressure front propagates in the external fluid and suddenly impinges

on the shell. From the mathematical point of view, this is exactly what the linear model assumes. Thus, the results

obtained for a large-stand-off case using the model employed here are expected to be quite close to what one would

observe in a real system, and so analysis of such a loading is of particular practical importance.

In contrast, a small-stand-off shock wave is considered strictly for the purposes of comparison with available

experimental data. The results produced by a linear model in the case of a close explosion hardly have any practical

value: the interaction is dominated by strictly nonlinear phenomena such as detonation bubble expansion and collapse,

water jet impact, and cavitation [e.g., Wardlaw and Luton (2000), Mair (1999b)]. Obviously, such interaction calls for a

much more sophisticated model than the one considered here. However, it turns out that a very small-stand-off shock

wave (R̂0 ¼ 1:1) produces the internal shock wave of the exact same geometry as that considered in the experimental

study we refer to later to verify our numerical results.

To estimate the parameters of a shock wave l and pa, one would normally use well-known empirical formulas [e.g.,

Cole (1948)]. For our purposes we assume pa ¼ 250kPa and l ¼ 0:0001314 s for both waves.

5.2. Downstream propagation

The internal pressure is induced by the motion of the shell surface, and evaluation of the integrals (39) is needed to

simulate it. At the very beginning of the interaction, however, pressure is mostly determined by the normal velocity of

the shell surface qw=qt. This can easily be shown mathematically if one recalls that ci
nðtÞ ¼ 1þOðtÞ when t51, and so

p̂r;i
n �

dwn

dt
; t51, (49)

which implies

p̂i
r �

qw

qt
; t51. (50)

As a matter of fact, it can be shown that at the head point Eq. (50) works very well for t 2 ½0; 0:5� for the large-stand-off
incident wave considered. Eq. (50) is very helpful in understanding of how the internal shock wave is originated.

Fig. 2 shows the normal velocity of the shell surface in the beginning of the interaction. The velocity profiles were

scaled so that the peak velocity is equal to 35% of the shell radius. The velocity reaches its maximum by t � 0:07 and, as
a result, the pressure in the internal fluid changes from zero to its maximum over a very short period of time. This

sudden pressure change induces a wave that we refer to as the ‘internal shock wave’. It is clear now that even though this

wave has no discontinuity associated with it, the pressure rise is almost vertical relative to the time it takes for the

incident wave to move over the shell, and so it is quite reasonable to call it a ‘shock wave’. We also note that the early

interaction (t ¼ 0:00� 0:25) appears to be most critical for the formation of the internal shock wave, and almost

completely determines the wave’s shape and energy.
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Fig. 2. Dynamics of the normal velocity of the shell surface at the beginning of the interaction.
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Having understood how the internal shock wave is originated, we turn to the analysis of the most interesting aspect of

the interaction, i.e. the dynamics of the internal pressure. Figs. 3 and 4 show a series of two-dimensional ‘snapshots’ of

the internal acoustic field. Two different types of waves can be clearly identified. The first one is the internal shock wave

itself, propagating at the velocity which is equal to that of sound in the internal fluid, and the second one being low-

amplitude ‘head’ waves propagating in the proximity of the shell surface at a supersonic (relative to the fluid) velocity.

These waves represent two qualitatively different phenomena occurring in the shell-fluid system, and are discussed

separately.

5.2.1. Internal shock wave

We start with the analysis of the internal shock wave. Originated at the beginning of the interaction, it propagates

through the internal fluid and reflects from the tail region at t � 2. The corresponding pressure patterns are quite

regular, and resemble those of a shock wave originated at a point source. However, one can observe two formations

that start to develop near the shell surface at t41, and whose presence becomes particularly apparent at t41:5. Pressure
in the affected zones is considerably higher than that in the internal shock wave itself. Thus, even though local, these

near-wall formations are important contributors to the interaction. Theoretically, there are two possible reasons for

these formations to exist. First, it is possible that they are caused by an elastic phenomenon of some sort in the shell,

and simply represent its radiation into the fluid. Another possibility is that these formations are a purely acoustic

phenomenon, and are not linked to the elasticity of the shell.

To shed some light on the origins of these near-wall formations, we turn to related experimental results. In the

absence of experimental data for shock wave reflection and focusing in fluid-filled elastic shells, we refer to the study by

Sun and Takayama (1996) who investigated focusing of a shock wave in a circular reflector, and presented a number of

high-resolution interferograms. We compare their experimental results for a weak shock wave (the Mach number of

1.1), Fig. 5(a) and (c), to the pressure patterns simulated numerically for the same instants, Fig. 5(b) and (d). As was

discussed above, the small-stand-off shock wave is used in simulations. Note that in the experiments considered shock

waves were generated in a shock tube that was connected to the circular reflector, and the vortex patterns observed are

due to emerging of the shock wave from the nozzle of the driven channel. We ignore these irregularities and only focus

on the wavefront region. Note also that the interferogram (a) shows two consecutive instants, and we only consider the

later one. Slight blurriness in some parts of the simulated images is due to the fact that the internal pressure wave does

not have a front, unlike a ‘real’ shock wave addressed in the experiments.

One can see that there is a good overall agreement between the experiments and numerical simulations. In particular,

the near-wall formations in question are present in both cases, and very similar geometries of those are observed. Since

the reflector in the experiments had solid walls, we can confidently conclude that the numerically observed near-wall

formations are an acoustic phenomenon, and are not induced by elastic effects in the shell. As to the physics of these

formations, they represent patterns inherent to regular reflection, as opposed to Mach reflection [e.g., Ben-Dor (1991),
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Fig. 3. Downstream propagation of the internal shock wave, t ¼ 0:25� 1:75.
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Ben-Dor and Takayama (1992)]. The two zones of high pressure associated with the near-wall formations evolve into a

fully developed regular reflection (t41:80, Figs. 3 and 4), and eventually merge.

We mention that along with the extensive experimental investigation, Sun (1998) and Sun and Takayama (1999)

approached the reflection numerically, and observed very good agreement between numerical simulations and

experiments. We also mention that, in the actual system, the instant when the near-wall reflection patterns are first

observed corresponds to transition from Mach to regular reflection (Sun and Takayama, 1996). It is interesting to point
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Fig. 4. Downstream propagation of the internal shock wave, t ¼ 1:90� 2:00.

Fig. 5. Comparison of numerically simulated pressure patterns, (b) and (d), versus experimental interferograms, (a) and (c); t ¼ 1:15
for (a) and (b), and t ¼ 1:88 for (c) and (d). [Interferograms (a) and (c) are reproduced with permission from Sun and Takayama, 1996.

A holographic interferometric study of shock wave focusing in a circular reflector, Shock Waves 6, p. 327, Fig. 4(b) and (c),r Springer

Verlag 1996].
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out that the ‘internal’ reflection (i.e. reflection from the walls of a circular reflector) is mostly regular, whereas the

‘external’ one (reflection from a hard cylinder) is mostly Mach. It should be emphasized that the pressure in the regular

reflection regions is much higher (up to 65%) than that in the internal shock wave itself, and can be comparable to or

even higher than the peak pressure in the incident shock wave. Taking the reflection phenomena in the internal fluid

into account is therefore critical for correct estimation of the maximum pressure experienced by the structure.
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One can notice that there is a slight difference in the circumferential extension of the regular reflection zones

simulated numerically and observed in the experiments. Most likely, this is due to the fact that the experiments were

conducted at the Mach number of 1.1, whereas the simulations were carried out for the Mach number of 1.0. The wave

pattern observed in the simulated image at t ¼ 1:15 in the region that is not yet affected by the internal shock wave is

due to the fact that the shell is elastic; this issue is addressed later.

Some secondary features can be clearly identified in both the experimental interferograms and numerical simulations.

Specifically, we mention near-wall irregularities (denoted as ‘IR1’ in Fig. 5(d)) which represent developing secondary

regular reflection and later evolve into a clearly identifiable pattern inherent to double regular reflection. Local high-

pressure zones IR2 corresponding to the triple points are observed as well. Note that even though the features

mentioned are clearly visible in the experimental shadowgrams, the corresponding pressures are hard to quantify. The

numerical simulations, however, clearly indicate that the developing secondary regular reflection produces negative

pressure, whereas that associated with the triple points is positive. Again, a slight discrepancy in the location of the

features discussed is most likely due to the difference in Mach numbers.

The good agreement with the experiments observed allows us to state that for the shock intensities considered, the

interior of the shell works mostly as a circular reflector. Even though this is an interesting result, it is not really

surprising, since the normal displacements of the shell are much smaller than its thickness in the case considered, and so

the interior of the shell is geometrically very close to a circular reflector.
5.2.2. Shell-induced waves

We now turn to the analysis of the low-magnitude ‘supersonic’ waves. These waves represent radiation into the

internal fluid of elastic waves propagating in the shell with velocity which is usually much higher than the sound speed

in the fluid. The existence of these ‘head’ waves is a well-known and very important feature of the interaction between

elastic shells and high-frequency loads, in particular shock waves. We shall refer to these waves as ‘shell-induced’ since

they are being constantly radiated by the shell, as opposed to the internal shock wave which is originated at the

beginning of the interaction, and after that its propagation is mostly governed by acoustic phenomena. Note that the

high-frequency low-magnitude pressure oscillations scarcely visible in the plots do not represent any physical

phenomena, and appear to be entirely due to series convergence issues.

The overall dynamics of the radiated field is rather uncomplicated. Unlike the positive pressure in the internal shock wave,

the shell-induced pressure is negative. This suggests that there is an outward motion of the shell surface associated with the

elastic waves, in contrast with its inward motion induced by the incident wave. Analysis of the normal displacements shows

that this is indeed the case, even though the magnitude of the corresponding displacements is very small.

The circumnavigating elastic waves reach the tail point at t ¼ 0:88 and superpose there, inducing an extensive zone of

negative pressure which is considerably lower than that in the shell-induced waves before the superposition. After the

superposition, the elastic waves propagate upstream, and continue to contribute to the radiated field. At t � 1:4 the

shell-induced field collides with the internal shock wave, and from then on the entire fluid domain inside the shell is

involved in the interaction.

Before proceeding to further analysis, experimental verification of the numerical results obtained seems appropriate.

A considerable number of experiments have been carried out to study a variety of waves induced by both short acoustic

pulses and steady ultrasonic isonification on submerged and/or fluid-filled shells. Unfortunately, it appears that internal

acoustic fields have not been visualized for a cylindrical shell exposed to a normally incident short acoustic pulse.

Neubauer and Dragonette (1970) did publish a number of photographs showing the acoustics of the interaction

between a submerged fluid-filled shell and an acoustical pulse, but only considered either an angular or partial

isonification. Bao et al. (1999) considered an ultrasonic interaction with a fluid-filled submerged shell, but only

addressed steady states. Sessarego et al. (1997) analyzed backscattering echo response of a submerged fluid-filled shell to

a short acoustic pulse and recorded a sequence of echoes from both circumnavigating and fluid-transmitted waves. Even

though they did consider the initial stage of the interaction, the acoustic fields themselves were not discussed. Therefore,

it appears that we will have to refer to available experimental studies of more or less closely related systems, and try to

show that there is a qualitative agreement between those and numerical results obtained here.

It seems that the most relevant to the present work is the study by Ahyi et al. (1998) who considered a submerged

empty cylindrical shell subjected to an ultra-short acoustic pulse and visualized the corresponding shell-radiated waves.

Only the initial portion of the first circumnavigation of the pulse was considered, and it appears reasonable to assume

that the most important dynamic features of this very early interaction with an acoustic pulse are reasonably close to

those observed in the case of the same shell subjected to a weak shock wave. Also, it was shown (Quentin and Talmant,

1989) that the circumferentially propagating waves on fluid-loaded thin cylindrical shells are extremely close to the

corresponding waves on fluid-loaded plates (ultra-low frequencies are the only exception due to the fact that the
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curvature of the shell starts to have a significant effect; this, however, is not a concern for shock waves). Furthermore, it

has been demonstrated (Ahyi et al., 1998) that at the beginning of the interaction, the acoustic field radiated by a plate

loaded by fluid on one side is very similar to the field radiated by the same plate loaded by the same fluid on both sides.

Therefore, it seems that in the proximity of the shell surface and at the very beginning of the interaction, the internal

shell-induced acoustic field in a fluid-filled submerged shell subjected to a weak external shock wave should be

qualitatively similar to the external radiated field induced around the evacuated shell by an ultra-short acoustic pulse of

similar geometry.

Fig. 6(a) shows an experimental interferogram by Ahyi et al. (1998). Four different types of waves are seen to

contribute to the acoustic field around the shell. Along with the incident and diffracted waves (I and SR, respectively),

two types of shell-induced waves are observed, the first being a symmetric Lamb wave (A0), and the second an

antisymmetric Lamb wave (S0). In this work we employ a relatively simple model for the shell, and it does not allow for

the observation of all types of elastic waves seen in the experiments. Therefore, we focus our comparison on the S0

wave.

Fig. 6(b) shows the results of the numerical simulations carried out at t ¼ 1:20, which approximately corresponds to

the instant the experimental shadowgraph was taken. In both cases, by the time considered, the elastic waves in the shell

have propagated around it once, reached the tail point, superposed there, and started to propagate back towards the

head point. This elastic process was accompanied by constant radiation of acoustic waves into the fluid, and the shell-

induced acoustic field was formed.
Fig. 6. Comparison of a numerically simulated acoustic field in a submerged fluid-filled shell, (b), to an experimental shadowgraph

showing the field around a submerged empty shell, (a); t ¼ 1:20 [Shadowgraph (a) is reprinted with permission from Ahyi et al., 1998.

Experimental demonstration of the pseudo-Rayleigh (A0) wave. Journal of the Acoustical Society of America 104, pp. 2727–2732,

r American Institute of Physics].
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Even though we consider a slightly different steel than that used in the experiments, the radiated wave patterns look

very similar in the two cases. Not only is there general qualitative similarity, the upstream circumferential advancement

of the corresponding wave fronts is almost the same, approximately 115�. Furthermore, the advancement of the

radiated waves at the tail point normally to the shell surface, inward in the fluid-filled case and outward for

the submerged shell, is approximately the same in both cases, about 30% of the shell radius (labelled ‘D’ in Fig. 6). Also,

the normal advancement of the waves radiated during the first circumnavigation measured at y ¼ 135� is almost the

same as well, about 60% of the shell radius.

Thus, it appears that the simulations of the shell-radiated field based on the semi-analytical solution obtained here are

in a good qualitative agreement with the available experimental data. This fact lends some credence to the physical

adequacy of the model employed, since being so much lower in amplitude than the internal shock wave, the shell-

induced waves are probably the most ‘delicate’ physical feature of the interaction, and are therefore more difficult to

model than the internal shock wave itself.

Having observed a good qualitative agreement with experiments, we look at shell-induced waves at larger times. The

next few superpositions of these waves travelling around the shell occur at 1.76 (head point), 2.64 (tail point), 3.52 (head

point), and 4.40 (tail point). Even though it was very easy to observe the acoustic effect of the superposition after the

first circumnavigation, detecting superpositions at larger times becomes more difficult due to multiple wave

interferences inside the shell, and also because the amplitude of shell-induced waves decreases with time. However, the

superposition of the waves that travel around the shell only once and return to the head point at t ¼ 1:76 can still be

easily observed, Fig. 7. Note that the geometry of the radiated field in this case is quite similar to that of the field

observed during the first superposition at the tail point.

The superposition at the tail point at t ¼ 2:64 is not observable due to the fact that it coincides with the much higher-

magnitude process of reflection and focusing of the internal shock wave. However, later superpositions can still be

observed, even though the associated pressures are low. The radiated fields induced by those late superpositions are very

similar to what we have already seen, and the corresponding pressure plots are not shown.

Finalizing the discussion of the shell-induced waves we mention an experimental study of the interaction between a

spherical shock wave and an elastic spherical body (Merlen et al., 1995; Latard et al., 1999), and a numerical study in

which a submerged elastic cylinder subjected to a shock wave was considered (Takano et al., 1997). Even though the

physics of such shock–solid interaction is quite different from the case considered here, it is worth mentioning that the

solid-induced ‘head waves’ propagating with a supersonic (relative to the fluid) velocity were reported in those

publications as well.
Fig. 7. Acoustic field induced by the superposition of the elastic waves at the head point at t ¼ 1:76.
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5.3. Primary reflection and focusing

After the internal shock wave reaches the tail region, it is reflected from the shell surface, and shortly after that the

reflected wave focuses, Figs. 8 and 9. Note that even though the internal shock wave reaches the tail point at exactly

t ¼ 2:00, due to the fact that it does not have a front, the pattern inherent to shock wave diffraction, i.e. a significant
Fig. 8. Reflection and focusing of the internal shock wave, t ¼ 2:05� 2:70.
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Fig. 9. Reflection and focusing of the internal shock wave, t ¼ 2:80� 3:00.
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increase of pressure at the reflection point, is observed with a slight delay of Dt � 0:03. Even though the difference

between the ‘classical’ shock reflection scenario and the present case is negligible, it is worth reporting, since it clearly

demonstrates the fact that there is no pressure discontinuity associated with the internal pressure wave. There are a

number of other interesting dynamic features observed during reflection and focusing. Before we discuss those, we

compare our numerical simulations with available experimental results. Once again, we refer to the experiments by Sun

and Takayama (1996).

Fig. 10(a) and (b) shows comparison between the simulated and experimentally observed pressure fields right before

focusing (t ¼ 2:53). A very good overall agreement is observed, including several secondary features of the pressure

patterns. Of those, we mention the symmetric high-pressure regions F1 corresponding to the triple points, Mach stems

F2, and the secondary regular reflection that has developed along the wall, F3. The latter is a very interesting shock

wave reflection phenomenon. Namely, it is known that regular reflection may repeat itself many times to produce a

series of reflection patterns (Sun and Takayama, 1996; Sun, 2004). As we will see shortly, the present case exemplifies

such a scenario, and a number of self-similar regular reflection patterns develop later in the interaction. It is interesting

to point out that, while the primary regular reflection produces positive pressures, the secondary regular reflection

produces negative ones. Note that there is a low-magnitude wave of negative pressure F4 which is present in the

simulated plots but is not seen in the experimental interferogram. This issue is addressed later. Note also that the

blurriness of the numerically generated pressure patterns is due to both the discussed features of the internal shock wave

and certain computational limitations (pressure was computed in 100 ‘layers’ r-wise, and interpolation was used for

points between the layers).

Another comparison we consider is that of the pressure patterns right after the focusing, t ¼ 2:67, Fig. 10(c) and (d).

Again, a good overall agreement is observed, including the well-developed double regular reflection F5a and F5b and

very high-magnitude ‘tip’ F6. As was the case with the pre-focusing field, the low-magnitude pressure wave F7 is

observed numerically but not experimentally.

Having observed a good agreement between the numerical results and experiments, we proceed to further discussion

of the reflection and focusing. First of all, we address the ‘secondary’ low-magnitude reflected wave (F4 and F7) which

is not seen in the experimental interferograms. Note that this reflected wave is present in the large-stand-off case as well,

Figs. 8 and 9; it is apparent that the reflected waves have different curvatures in the small- and large-stand-off cases.

Since the only difference between a circular reflector and the present case is the elasticity of the shell walls, it seemed

logical to assume that the secondary reflected wave is a product of the shell motion caused by the reflection of the

internal shock wave from the tail region. This, however, is not the case. Indeed, we have just seen that the two

wavefronts of different curvature produce different secondary reflected waves. Therefore, if those waves were ‘elastic’ in

origin, shell velocity profiles simulated for two different curvatures of the incident wave would have to differ in the tail

region quite significantly as well. This, however, does not happen, and it can be shown that the shell velocity

distribution in the tail region at the time of reflection is very similar for both the small- and large-stand-off incident

waves. This suggests that the secondary reflected waves are acoustic in nature, or at least are not directly induced by the

motion of the shell surface.

Careful analysis of the reflection revealed that these secondary waves indeed are present due to the fact that the shell

is elastic. However, their physics is more complex than was initially thought. To understand what is happening, we

recall that shell-induced waves of negative pressure are propagating in the internal fluid well ahead of the internal shock

wave. In particular, we have seen that after the superposition of the elastic waves at t ¼ 0:88 at the tail point, a zone of

negative pressure starts to develop in the proximity of the tail region, and eventually it propagates upstream. At the
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Fig. 10. Comparison of numerically simulated pressure patterns, (b) and (d), versus experimental interferograms, (a) and (c); t ¼ 2:53
for (a) and (b), and t ¼ 2:67 for (c) and (d) [Interferograms (a) and (c) are reproduced with permission from Sun and Takayama, 1996.

A holographic interferometric study of shock wave focusing in a circular reflector. Shock Waves 6, p. 335, Fig. 12(a) and (b), 1996,

r Springer-Verlag 1996].
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same time, the internal shock wave propagates downstream, and the two wavefronts collide at t � 1:4. After that, the

internal shock wave continues to propagate downstream. However, the pressure in the area which is not yet affected by

this wave is not zero anymore, it is negative. So, effectively, one observes a low-magnitude zone of negative pressure that

decreases in size and eventually collapses at t ¼ 2:0. This collapse apparently results in a wave of negative pressure we

refer to as the ‘secondary reflected wave’.

Since the shape and size of the negative pressure zone is completely determined by the curvature of the internal shock

wave, the explanation proposed rests well with the observed geometrical differences of the reflected waves in the small-

and large-stand-off cases. It should be emphasized that the existence of such a wave of negative pressure appears to be a

unique feature of the interaction between an elastic shell and an external shock wave.

We note that in the original high-resolution photographs (Sun, 2004), a secondary reflected wave with the geometry

very similar to the one observed here is scarcely visible right after the reflection. However, it is not present in the images

at later instants. This fact leaves some room for further discussion of the numerically observed secondary reflected

wave. To clarify the issue completely, one would have to use the present linear model and simulate the reflection from

the interior of the shell of the same geometry under the assumption of absolute rigidity of the walls. That, however,

would require one to consider an internal explosion, in which case multiple reflections from the shell surface would

significantly complicate analysis of the acoustic field.
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Now we turn to another interesting aspect of the interaction. Namely, it is known that focusing of a shock wave

produces high pressures. The magnitudes of those are always of particular practical interest. It turns out that in the

considered case of a large-stand-off shock wave, the maximum positive pressure produced by focusing reaches 320 kPa

at t � 2:50. This pressure exceeds the peak incident one by almost 30%, and is about two times higher that the

maximum pressure in the internal shock wave in the beginning of the interaction. Moreover, focusing is followed by

relatively high-magnitude negative pressure. In the present case, it can be as low as �140kPa at t � 2:64, which
corresponds to 55% of the peak incident pressure.

From the practical point of view, the observations made imply that the engineer should be prepared to deal with

internal pressures that are comparable to or even higher than the peak pressure in the incident shock, and which occur

after the incident wave has passed over the structure. This observation is of particular importance when one analyzes

safety of shell structures containing interior elements, especially if those are shock-sensitive (e.g., thin-walled pipes,

various equipment etc.). It is important to note that if such interior elements are present, the pressure pattern in the

internal fluid will change, and, strictly speaking, the results obtained here would no longer be valid. However, if the

interior elements in question occupy a relatively small volume, and if they are not located in the close proximity of the

focal point, the results presented will probably still be applicable. An earlier study of the stress–strain state of a fluid-

filled shell containing a rigid cylindrical core (Iakovlev, 2004) seems to support this conclusion, even though the

acoustics of such a system is yet to be studied.
5.4. Upstream propagation and secondary reflection and focusing

To the best of the author’s knowledge, the upstream propagation of the reflected internal shock wave has not been

addressed either experimentally or numerically. Phan and Stollery (1985) considered upstream propagation in a circular

reflector and visualized reflection of an internally generated shock wave from a plane internal wall. However, such a

system is very much different from the one considered here, and is of little use when one is concerned with a shell with

no interior structures attached to it subjected to an external shock wave.

Despite the lack of literature addressing the late interaction, it appears to be of theoretical and practical interest. In

particular, we shall show that this stage has some rather unique dynamic features which are not observed during the

earlier interaction. We shall also demonstrate that secondary focusing produces very low pressures comparable in

magnitude with the maximum positive pressures in the very beginning of the interaction. Furthermore, analysis of the

late interaction is of interest since at such large times the influence of the incident shock wave is negligible for any

practically meaningful decay rate, and so the process is almost completely driven by the wave phenomena in the shell

and fluid(s).

Figs. 11 and 12 show a sequence of pressure snapshots during the upstream propagation. First of all, we reiterate

the fact that there are two reflected shock waves of different magnitudes propagating in the fluid. The ‘primary’

wave has an elliptically shaped front originated after the collapse of the triple points. The origins of the ‘secondary’ one

were discussed earlier, and the front of this wave has a much larger radius of curvature. Interacting with the shell

surface, the secondary reflected wave follows a reflection pattern which is very similar to that of the internal shock wave

during the downstream propagation. The primary reflected wave, however, exhibits completely different dynamic

features.

Initially (t � 3), the interaction of the ‘front’ of the primary reflected wave with the shell surface produces the classical

single regular reflection pattern. Later, however, another regular reflection starts to develop at a smaller scale at the foot

of the primary Mach stem (t ¼ 3:20� 3:60). This process is repeated over and over again, with self-similar regular

reflections originating at smaller scales. Eventually, one can observe as many as three self-similar regular reflection

patterns, e.g., t ¼ 4:85� 5:00. The possibility of such multiple reflection patterns has been discussed in the literature

[e.g., Sun and Takayama (1996), Sun (2004)], and it is of interest to actually see it develop.

Even though the primary and secondary reflected waves have different curvatures, they propagate through the fluid

with the same velocity, and both reach the head point at t ¼ 4:00. The secondary wave reflects from the head region and

focuses; the corresponding pressure patterns are very similar to those observed for the internal shock wave in the

proximity of the tail region at t42. The reflection pattern of the primary reflected wave is different due to a different

geometry of its front. We note that due to a significant difference in magnitudes, the reflection pattern of the secondary

wave ‘underlies’ that of the primary one and appears in Figs. 11 and 12 as a scarcely visible ‘ghost image’.

The secondary focusing occurs at t � 4:74 and it produces high-magnitude negative pressure, as opposed to the high-

magnitude positive pressure produced by the primary focusing. It is of particular interest that the global minimum of

the pressure is reached during the secondary focusing. The pressure drops below �150kPa, i.e. it is even lower than the

minimum attained shortly after the primary focusing. This fact has some interesting implications when cavitation is a
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Fig. 11. Upstream propagation of the internal shock wave, t ¼ 3:00� 4:65.
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concern. We emphasize that for the shell considered, the low pressure observed during the secondary focusing is equal

in magnitude to the maximum pressure in the internal shock wave in the beginning of the interaction. We also note that

after the secondary focusing, the internal wave pattern becomes rather complex due to the well-developed multiple

regular reflection.
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Fig. 12. Upstream propagation of the internal shock wave, t ¼ 4:70� 5:00.
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6. Conclusions

We have considered the interaction between a submerged fluid-filled circular cylindrical shell and an external shock

wave, and focused our study on the internal acoustic field. A fully linear model of the system was employed, and a semi-

analytical solution was obtained. The interaction was simulated numerically and the internal acoustic field was

visualized.

A very good agreement between the numerically simulated pressure fields and available experimental data was

observed. In particular, it was found that the wave propagating in the internal fluid exhibits all the major dynamic

features inherent to shock wave reflection from curved surfaces, as well as some of the secondary features; namely, well-

developed regular reflection and the associated Mach stems and triple points were observed, as well as the focusing of

the reflected wave. The low-magnitude shell-radiated waves which are an important feature of any fluid–structure

interaction were also observed. It is possible, therefore, to state that a relatively simple, completely linear model

employed in this work captures the complex dynamics of the interaction really well.

From the physical point of view, a close similarity between the simulated pressure fields inside an elastic shell and

experimental results for rigid-wall reflectors implies that when the incident shock wave is relatively weak, the interior of

the shell works as a circular reflector with respect to the wave propagating in the internal fluid. Furthermore, a good

agreement with experimental data suggests that the solution obtained is suitable for use as a benchmark. It also suggests

that the methodology employed in this work can be confidently used to study more complex fluid-interacting shell

systems, in particular those for which experimental data is not yet available.

Along with qualitative analysis of the interaction, the pressure inside the shell was also quantified. In parti-

cular, it was found that the peak pressure produced by the focusing of the internal wave can be substantially higher

than the peak incident pressure. For a shell with the thickness-to-radius ratio of 0.01, for example, the

maximum focusing pressure exceeds the peak incident one by almost 30%. From the engineering point of view,

this observation is of particular importance when shock-sensitive elements are placed inside a fluid-filled shell.

The study of the reflection and focusing has also demonstrated that analysis of the pressure distribution on

the shell surface is not sufficient to account for the acoustic features of the entire system. Some important acoustic

phenomena take place inside the fluid, and manifest themselves on the shell surface with a sometimes considerable

delay.
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The late interaction was addressed as well, i.e. the dynamics of the system was analyzed well after the incident shock

wave has passed over the shell. In spite of the fact that very limited information is available in the literature on this stage

of the process, it exhibits some very interesting wave reflection phenomena. In particular, multiple regular reflection was

seen to develop along the surface of the shell, and up to three self-similar regular reflection patterns could be clearly

identified.

The internal pressure was expressed in terms of the normal displacement of the shell surface and what we referred to

as the ‘volume response functions’. From the experimentalist’s point of view, such a representation suggests a possibility

of using the experimental measurements of the normal displacement to simulate the entire internal acoustic field. Since

such measurements are less technically challenging than recording the dynamics of the acoustic field itself, exploring this

possibility seems to be an interesting direction for the future research.

In summary, we state that the fully linear approach employed in this work appears to be working quite well. Not only

can it be used to understand the physics of the interaction between shock waves and shell systems that are more

complex than the one considered here, it can also be employed to produce a series of fluid–structure interaction

benchmark solutions.
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Appendix A. Internal response functions

In order to obtain the response functions xi
nðr; tÞ, we employ the same analytical procedure as the one that was used to

compute their ‘surface’ counterparts ci
nðtÞ [the procedure itself, along with all necessary proofs, can be found in

Iakovlev (2002b)]. Since the inversion technique remains very much the same, we will just briefly outline the highlights,

and then focus on the results and the difference brought in by the space variable r.

It can be shown that all zeros of the denominator of (30) are pure imaginary, of first order, and are given by

sn
�k ¼ �o

n
k; k ¼ 1; 2; . . . , (51)

where on
k is the kth positive zero of the first derivative of the Bessel function of first kind of order n, Jn, except for the

point s ¼ 0. Xi
n therefore has an infinite number of simple poles given by (51), with the point s ¼ 0 being a second order

pole for n ¼ 0 and a removable singular point for nX1.

It can also be shown that Mellin’s integral for Xi
n,

xi
nðr; tÞ ¼

1

2pi

Z �þi1

��i1
Xi

nðr; sÞ e
st ds, (52)

where � is such that all the singular points of the integrand

Znðr; sÞ ¼ Xi
nðr; sÞ e

st (53)

lie in the half-plane Reso�, can be expressed in terms of the residues of the integrand at the poles (51) and possibly the

point s ¼ 0. Then, the functions xi
nðr; tÞ can be obtained as

xi
nðr; tÞ ¼

X
k¼�1;�2;...

Rn
sn

k
, (54)

where Rn
sn

k
is the residue of Znðr; sÞ at the point s ¼ sn

k.

The residues can be obtained as

R0
0 ¼ 2t, (55)
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Rn
ion

k
; k¼1;2;... ¼

Jnðron
kÞ

Jnðon
kÞ

ion
k

fn2 � ðon
kÞ

2
g
fcosðon

ktÞ þ i sinðon
ktÞg, (56)

and

Rn
�ion

k
; k¼1;2;... ¼ �

Jnðron
kÞ

Jnðon
kÞ

ion
k

fn2 � ðon
kÞ

2
g
fcosðon

ktÞ � i sinðon
ktÞg, (57)

and hence xi
nðr; tÞ is given by

xi
0ðr; tÞ ¼ 2tþ 2

X1
k¼1

J0ðro0
kÞ

J0ðo0
kÞ

1

o0
k

sinðo0
ktÞ, (58)

and

xi
nðr; tÞ ¼ 2

X1
k¼1

Jnðron
kÞ

Jnðon
kÞ

on
k

fðon
kÞ

2
� n2g

sinðon
ktÞ; nX1. (59)

Note that upon substitution of r ¼ 1 into (58) and (59) we arrive at the analytical expressions for ci
n (Iakovlev,

2002b), which of course is expected since the ‘surface’ response functions are just a special case of the ‘volume’ ones.

Despite the similarity between the analytical expressions for the ‘surface’ and ‘volume’ response functions, the latter are

significantly more complex. We will discuss the most important aspects of this complexity.

First of all, we mention that as it was the case with ci
n, the functions x

i
n have infinitely many points of discontinuity

which are of two types, singularities and finite discontinuities. However, the number of discontinuities of xi
n in any given

t-interval is different than that of ci
n. Moreover, unlike in the ‘surface’ case, locations of the discontinuities are not fixed

at the points t ¼ 2, 4, 6, etc. Specifically, they depend on r, and the singularities are located at t ¼ 1þ r, 3� r, 5þ r etc.,

i.e. at the points

ts
m ¼ 2mþ 1þ ð�1Þmr; m ¼ 0; 1; . . . , (60)

whereas the finite discontinuities are located at the points t ¼ 1� r, 3þ r, 5� r etc., i.e. at

t f
m ¼ 2mþ 1� ð�1Þmr; m ¼ 0; 1; . . . . (61)

As an example, Fig. A.1 shows the function xi
1ðr; tÞ for various r. Note that (60) and (61) are applicable to the ‘surface’

case r ¼ 1 as well, but in that case each point of discontinuity is represented by two equal consecutive values given by

these equations (e.g., 1þ r and 3� r will produce the first singular point of ci
n at t ¼ 2, whereas 3þ r and 5� r

correspond to its first point of finite discontinuity at t ¼ 4). Note that the value of xi
n at a point of finite discontinuity is
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Fig. A.1. Response function xi
1ðr; tÞ for various r.
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equal to a half of the sum of the left- and right-side limits at that point [the phenomena discussed in Iakovlev (2002b)],

and is represented by dots in Fig. A.1. To avoid making the plots overly complex, the functions in Figure A.1 are shown

as continuous.

Before we turn to analysis of the physics behind the discontinuities, we note that xi
nðr; tÞ represent the response of the

internal fluid to the sudden motion of the shell surface with the velocity numerically equal to cos ny. Indeed, if we
rewrite (39) as

p̂r;i
n ¼ � _wnðt� ZÞxi

nðr; ZÞj
t
0 þ

Z t

0

_wnðt� ZÞ_x
i

nðr; ZÞdZ, (62)

where a dot over a function denotes its first derivative, and assume that _wnðtÞ ¼ 1 for all t40 and _wnð0Þ ¼ 0 (i.e. that the

shell surface suddenly starts to move at t ¼ 0 with the velocity of cos ny), the pressure radiated by the shell into the

internal fluid will be given by

p̂i
rðr; y; tÞ ¼ xi

nðr; tÞ cos ny (63)

for ro1, and

p̂i
rð1; y; tÞ ¼ fx

i
nð1; tÞ þ 1g cos ny. (64)

The pressure on the inner surface of the shell and inside the fluid is governed by different equations since every

time the wave contacts the shell, the pressure increases by unity (multiplied by the cosine factor). If we set y ¼ 0,

i.e. consider the pressure distribution along the centreline, response functions at the point ðr; 0Þ become nu-

merically equal to the radiation pressure at that point, and so the underlying physics becomes particularly easy to

understand.

Iakovlev (2004) hypothesized about the physical origins of the two types of discontinuities observed, and suggested

that the singularities represented ‘focusing’ of internal acoustic waves at the centre r ¼ 0, whereas the finite

discontinuities were attributed to reflection of the acoustic waves from the internal surface(s) (note that the words

‘reflection’ and ‘focusing’ are used here not in a shock wave sense but in the context of the above-discussed

axisymmetric pressure wave which converges at the centre and reflects from the walls). The explanations proposed in

Iakovlev (2004) seem to be further supported in most parts by the results obtained here, with some clarifications to be

made.

To see what is actually happening inside the shell, we assume that its surface is moving according to

qw

qt
¼ cos ny; t40;

qw

qt

����
t¼0

¼ 0, (65)

and observe the pressure at the point ðr; 0Þ. The initial pressure impulse propagates through the internal fluid and

reaches the centre at t ¼ 1 where focusing occurs producing a pulse of infinite pressure. At the point ðr; 0Þ this pulse will
be detected at t ¼ 1þ r, which correspond to the first singular point of xi

n. At the same point, the original impulse itself

propagating towards the centre will be detected at t ¼ 1� r, and since the pressure corresponding to that impulse is

finite, t ¼ 1� r is a point of finite discontinuity for xi
n.

After the focusing occurs, the infinite pressure pulse travels back towards the shell surface where it reflects at

t ¼ 2 (which corresponds to the first singularity of the ‘surface’ response function ci
n). After that, it travels back

to the centre. As a result, at the point ðr; 0Þ an infinite pressure is detected again at t ¼ 3� r, which corresponds

to the second singular point of xi
n. At t ¼ 3, infinite pressure pulses arrive at the centre simultaneously from all

directions and focus there which results in a finite pressure pulse. It travels towards the shell surface, and passes

through the point ðr; 0Þ at t ¼ 3þ r which corresponds to the second finite discontinuity of xi
n. This finite pressure

pulse reaches the shell surface at t ¼ 4 (which corresponds to the first finite discontinuity of the ‘surface’ response

function ci
n), reflects from it, and travels back to the centre passing through the point ðr; 0Þ at t ¼ 5� r which

corresponds to the third finite discontinuity of xi
n. Then the finite pulse focuses at the centre at t ¼ 5 resulting in an

infinite pressure pulse, and the process continues with the ‘finite–infinite–infinite–finite’ pulse sequence being

continuously repeated.

Thus, we have established that, as was the case with the ‘surface’ response functions, the singular points of xi
n

represent focusing of the internal wave at the centre. As to the finite discontinuities, some remarks are to be made. For

all ro1, the first finite discontinuity of xi
n corresponds to the compression wave originated at t ¼ 0 on the shell surface.

All other finite discontinuities correspond to focusing of infinite pressure pulses at the centre which results in finite

pressure pulses. Since this is only possible when an infinite pulse reflects from the shell surface and reaches the centre, it

still makes sense to attribute the finite discontinuities, except for the first one, to the surface reflections. However, the

emphasis is slightly different now. In particular, it should be clearly understood that the focusing is the very reason for
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the infinite pulses to alternate with the finite ones. If the centre were isolated and the first pulse were infinite, one would

never observe a finite pulse because focusing that eliminates infinite pressure would never occur. Alternatively, if the

first pulse is finite and the centre is isolated, infinite pressure is never observed. The latter would be the case when, for

example, a rigid coaxial core is placed inside the shell (Iakovlev, 2004).

It is particularly clear now that the fact that the response functions completely determine the mathematical solution

of the ‘acoustic’ part of the problem is not a coincidence at all. As we have just seen, they capture the very essence of the

physics of the interaction as well. Thus, the theoretical importance of studying response functions for various shell

systems should never be underestimated.

We note that every point inside the fluid domain experiences twice as many pressure discontinuities as that on the

shell surface. This happens because pressure waves that travel back and forth between the centre and the shell reflect

from the latter only once during each ‘cycle’, but pass twice through any other point. From the mathematical point of

view, as r! 1 the discontinuities become closer and closer to each other, and finally, at r ¼ 1, each pair of

discontinuities of xi
n merges to produce a discontinuity of ci

n, Fig. A.1. Note that xi
nðr; tÞ ¼ 0 for all to1� r since the

‘signal’ from the shell surface has not yet reached the point ðr; yÞ.
We also mention that even though at r ¼ 0 Eqs. (58) and (59) are still applicable, the expression for the

internal pressure can be considerably simplified in this case. Indeed, if r ¼ 0, Jnðron
kÞ ¼ 1 for n ¼ 0 and is zero otherwise.

Hence,

xi
0ð0; tÞ ¼ 2tþ 2

X1
k¼1

1

o0
kJnðo0

kÞ
sinðo0

ktÞ, (66)

and

xi
nð0; tÞ ¼ 0; tX0; nX1. (67)

Then, the pressure on the axis of the shell is given by

p̂i
rð0; tÞ ¼

Z t

0

€w0ðZÞx
i
0ð0; t� ZÞdZ, (68)

where a double over dot denotes the second derivative of a function.

In order to illustrate just how much more challenging dealing with the ‘volume’ response functions is, we look at the

‘worst case scenario’ of large n and small r. In particular, Fig. A.2 shows xi
150ð0:02; tÞ.

As one can see, the function is very close to zero almost everywhere, except for the very close proximities of the points

t ¼ 1, 3, and 5 (namely, the intervals L1
r ¼ ½1� r; 1þ r�, L2

r ¼ ½3� r; 3þ r�, and L3
r ¼ ½5� r; 5�). As to the behaviour

inside those intervals, close-ups of the ‘problem areas’ have to be considered (insets 1 and 2) from which it is apparent

that xi
150ð0:02; tÞ is highly oscillating inside L1

r 2L3
r . It is of particular importance that even though the period of

oscillations is extremely small, the amplitude is not. The frequency of the oscillations increases significantly as t

approaches the points of discontinuity t
f
0 ¼ 0:98 and ts

0 ¼ 1:02, and yet another set of close-ups is needed to analyze the

behaviour of xi
150ð0:02; tÞ in the close proximity of those points, insets 3 and 4.

Quite naturally, this mathematical complexity leads to a variety of numerical challenges, of which we

mention two. The first is integration of xi
n. As is apparent from Fig. A.2, essentially different integration steps

have to be used within different subintervals of the time domain. It was found that, to ensure an acceptable accuracy

of the results, the integration step had to be varied from a relatively large values in low-frequency regions (far

away from the points of discontinuity) to 10�6 or even smaller in high-frequency regions. We would like to parti-

cularly emphasize that if in the proximity of the singular points one uses an integration step which is not

sufficiently small, the resulting pressure field will be contaminated with very undesirable numerical noise. The nature

of this noise is such that on two-dimensional plots of the pressure field it produces a very regular pattern, and

appears as a wave of some sort which is hard to distinguish from ‘real’ waves. The situation is worsened by the fact that

the magnitude of the ‘noisy’ contributions is comparable with that of some second-order ‘real’ waves, and so in the

presence of this type of noise one is in danger of arriving at the wrong conclusions about the physics of the interaction.

The second challenge we mention here is that the series in (58) and (59) converge slower and slower as one approaches

the points of discontinuity, especially at small r and large n. To achieve acceptable accuracy for any t but still ensure

bearable computational time, the number of terms considered in the corresponding series had to be t-dependent. It

changed from a few thousands in the regions far away from the discontinuities to many tens of thousands in the close

proximity of those.

Even though the mentioned computational difficulties appear to be quite a significant obstacle, the good news

is that since the response functions do not depend on the properties of the shell or fluids, they have to be computed
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only once. Because the computations in question have been performed in the present work, future

investigations based on the developed model will be much less mathematically challenging and much more time-

efficient.

To deal with the numerical challenges inherent to the computation of the ‘volume’ response functions and

their integrals, a software package was developed in Cþþ. Great care was taken to make sure that necessary

accuracy was achieved at all t, r, and n. Also, as we emphasized earlier, knowing the dynamics of w along the

circumference of the cross-section of the shell is sufficient to simulate the entire internal field. The Cþþ code was

developed with that in mind, i.e. the only input needed to simulate the internal acoustic field is the time-history

of w. Such an approach to computation of the acoustic pressure allows one to relatively effortlessly simulate the internal

field in any fluid-filled shell for which the normal displacements have been determined either experimentally or

numerically.
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Appendix B. Incident shock wave

The free-field fluid velocity potential f0 in a spherical shock wave in the spherical coordinate system centred at the

source is governed by the one-dimensional wave equation,

q2f0

qR2
þ

2

R

qf0

qR
¼

1

c2f

q2f0

qT2
, (69)

where R is the radial coordinate, T is time, and cf is the sound speed in the fluid. Here it is assumed that T ¼ 0

corresponds to the moment the shock wave is originated, not the moment the shock wave falls on the shell.

The solution of (69) is any function of the form

f0 ¼
C

R
GðT � Rc�1f Þ, (70)

where C is an arbitrary constant and G is an arbitrary function of its argument. To model a realistic shock wave

propagating in the fluid [e.g., Cole, 1948], i.e. to ensure that f0 represents a shock wave with exponentially decaying

pressure behind the front, we assume

GðzÞ ¼ e�zl�1HðzÞ, (71)

where l is the rate of exponential decay and H is the Heaviside step function, HðzÞ ¼ 1 for zX0, and HðzÞ ¼ 0

otherwise. Substituting (71) into (70), we obtain the potential in such a step-exponential shock wave as

f0 ¼
C

R
e�ðT�Rc�1

f
Þl�1HðT � Rc�1f Þ, (72)

where C is still to be determined. We recall that

p0 ¼ �rf

qf0

qt
, (73)

where p0 is the incident pressure. Thus, we can write

p0 ¼ �
Crf

Rl
e�ðT�Rc�1

f
Þl�1HðT � Rc�1f Þ. (74)

To determine the suitable value of the constant C, we ‘calibrate’ the incident pressure [e.g., Sprague and Geers (1999)].

Specifically, we choose C such that p0 is equal to a specific peak value pa at the moment the shock wave impinges on the

shell, i.e. when R ¼ SR and T ¼ SRc�1f , where SR is the shock wave stand-off, or the distance between the shell and the

wave source, SR ¼ R0 � r0. Then,

C ¼ �
lpaSR

rf

. (75)

The next step is to express the time T in terms of the ‘shell’ time t, where t is set so that t ¼ 0 corresponds to the

instant when the shock wave first contacts the shell, T ¼ SRc�1f , and so

t ¼ T � SRc�1f ¼ T � ðR0 � r0Þc
�1
f . (76)

Finally, we express the radial coordinate R of the source-centred spherical coordinate system in terms of the shell-

based cylindrical coordinates ðx; R; yÞ where x, R, and y are the axial, radial, and angular coordinates, respectively. It is

easy to show that

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 þ x2 þ R2 � 2R0R cos y
q

. (77)

We, however, consider a two-dimensional formulation of the problem, i.e. disregard any changes in the axial direction.

To satisfy this requirement, we consider the incident pressure in the mid-section of the shell (i.e. x ¼ 0), and assume that

the same pressure profile is applied to the shell for any other x (i.e. we are switching to a ‘cylindrical’ shock wave with

the exponential pressure decay behind the wavefront). Under this assumption, the radial distance R expressed in the

polar coordinates ðR; yÞ based on the axis of the shell is given by

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 þ R2 � 2R0R cos y
q

. (78)
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Then, we can write down the expressions for f0 and p0 that are used in the actual computations,

f0 ¼ �
lpaSR

rf R
e�ðt�c�1

f
ðR�SRÞÞl

�1

Hðt� c�1f ðR� SRÞÞ (79)

and

p0 ¼
paSR

R
e�ðt�c�1

f
ðR�SRÞÞl

�1

Hðt� c�1f ðR� SRÞÞ. (80)
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